Table of Contents
Fetching ...
Paper

Language Models are Few-Shot Learners

TL;DR

This work shows that scaling a single autoregressive language model to 175 billion parameters enables strong few-shot learning across a wide range of NLP tasks without task-specific fine-tuning. GPT-3 demonstrates broad capabilities in zero-, one-, and few-shot settings, with performance often approaching or matching specialized fine-tuned models and exhibiting emergent in-context learning behaviors. The paper also thoroughly analyzes data contamination, highlights limitations and potential societal impacts, and discusses directions for improving efficiency, bias mitigation, and grounding. Overall, GPT-3 suggests a path toward highly adaptable, general language systems, while underscoring the need for careful consideration of misuse, fairness, and energy costs.

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.