Robotics
Robot perception, control, manipulation, and autonomous systems
Robot perception, control, manipulation, and autonomous systems
Assistive devices must determine both what a user intends to do and how reliable that prediction is before providing support. We introduce a safety-critical triggering framework based on calibrated probabilities for multimodal next-action prediction in Activities of Daily Living. Raw model confidence often fails to reflect true correctness, posing a safety risk. Post-hoc calibration aligns predicted confidence with empirical reliability and reduces miscalibration by about an order of magnitude without affecting accuracy. The calibrated confidence drives a simple ACT/HOLD rule that acts only when reliability is high and withholds assistance otherwise. This turns the confidence threshold into a quantitative safety parameter for assisted actions and enables verifiable behavior in an assistive control loop.
Sequential-Horizon Vision-and-Language Navigation (SH-VLN) presents a challenging scenario where agents should sequentially execute multi-task navigation guided by complex, long-horizon language instructions. Current vision-and-language navigation models exhibit significant performance degradation with such multi-task instructions, as information overload impairs the agent's ability to attend to observationally relevant details. To address this problem, we propose SeqWalker, a navigation model built on a hierarchical planning framework. Our SeqWalker features: i) A High-Level Planner that dynamically selects global instructions into contextually relevant sub-instructions based on the agent's current visual observations, thus reducing cognitive load; ii) A Low-Level Planner incorporating an Exploration-Verification strategy that leverages the inherent logical structure of instructions for trajectory error correction. To evaluate SH-VLN performance, we also extend the IVLN dataset and establish a new benchmark. Extensive experiments are performed to demonstrate the superiority of the proposed SeqWalker.
This study focuses on optimizing path planning for unmanned ground vehicles (UGVs) in precision agriculture using deep reinforcement learning (DRL) techniques in continuous action spaces. The research begins with a review of traditional grid-based methods, such as A* and Dijkstra's algorithms, and discusses their limitations in dynamic agricultural environments, highlighting the need for adaptive learning strategies. The study then explores DRL approaches, including Deep Q-Networks (DQN), which demonstrate improved adaptability and performance in two-dimensional simulations. Enhancements such as Double Q-Networks and Dueling Networks are evaluated to further improve decision-making. Building on these results, the focus shifts to continuous action space models, specifically Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3), which are tested in increasingly complex environments. Experiments conducted in a three-dimensional environment using ROS and Gazebo demonstrate the effectiveness of continuous DRL algorithms in navigating dynamic agricultural scenarios. Notably, the pretrained TD3 agent achieves a 95 percent success rate in dynamic environments, demonstrating the robustness of the proposed approach in handling moving obstacles while ensuring safety for both crops and the robot.
Multiagent reinforcement learning, as a prominent intelligent paradigm, enables collaborative decision-making within complex systems. However, existing approaches often rely on explicit action exchange between agents to evaluate action value functions, which is frequently impractical in real-world engineering environments due to communication constraints, latency, energy consumption, and reliability requirements. From an artificial intelligence perspective, this paper proposes an enhanced multiagent reinforcement learning framework that employs action estimation neural networks to infer agent behaviors. By integrating a lightweight action estimation module, each agent infers neighboring agents' behaviors using only locally observable information, enabling collaborative policy learning without explicit action sharing. This approach is fully compatible with standard TD3 algorithms and scalable to larger multiagent systems. At the engineering application level, this framework has been implemented and validated in dual-arm robotic manipulation tasks: two robotic arms collaboratively lift objects. Experimental results demonstrate that this approach significantly enhances the robustness and deployment feasibility of real-world robotic systems while reducing dependence on information infrastructure. Overall, this research advances the development of decentralized multiagent artificial intelligence systems while enabling AI to operate effectively in dynamic, information-constrained real-world environments.
Conventional optimization-based metering depends on strict adherence to precomputed schedules, which limits the flexibility required for the stochastic operations of Advanced Air Mobility (AAM). In contrast, multi-agent reinforcement learning (MARL) offers a decentralized, adaptive framework that can better handle uncertainty, required for safe aircraft separation assurance. Despite this advantage, current MARL approaches often overfit to specific airspace structures, limiting their adaptability to new configurations. To improve generalization, we recast the MARL problem in a relative polar state space and train a transformer encoder model across diverse traffic patterns and intersection angles. The learned model provides speed advisories to resolve conflicts while maintaining aircraft near their desired cruising speeds. In our experiments, we evaluated encoder depths of 1, 2, and 3 layers in both structured and unstructured airspaces, and found that a single encoder configuration outperformed deeper variants, yielding near-zero near mid-air collision rates and shorter loss-of-separation infringements than the deeper configurations. Additionally, we showed that the same configuration outperforms a baseline model designed purely with attention. Together, our results suggest that the newly formulated state representation, novel design of neural network architecture, and proposed training strategy provide an adaptable and scalable decentralized solution for aircraft separation assurance in both structured and unstructured airspaces.
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation.
Many embedded devices operate under resource constraints and in dynamic environments, requiring local decision-making capabilities. Enabling devices to make independent decisions in such environments can improve the responsiveness of the system and reduce the dependence on constant external control. In this work, we integrate an autonomous agent, programmed using AgentSpeak, with a small two-wheeled robot that explores a maze using its own decision-making and sensor data. Experimental results show that the agent successfully solved the maze in 59 seconds using 287 reasoning cycles, with decision phases taking less than one millisecond. These results indicate that the reasoning process is efficient enough for real-time execution on resource-constrained hardware. This integration demonstrates how high-level agent-based control can be applied to resource-constrained embedded systems for autonomous operation.
This paper presents a batteryless wireless communication node for the Internet of Things, powered entirely by ambient light and capable of receiving data through visible light communication. A solar panel serves dual functions as an energy harvester and an optical antenna, capturing modulated signals from LED light sources. A lightweight analog front-end filters and digitizes the signals for an 8-bit low-power processor, which manages the system's operational states based on stored energy levels. The main processor is selectively activated to minimize energy consumption. Data reception is synchronized with the harvester's open-circuit phase, reducing interference and improving signal quality. The prototype reliably decodes 32-bit VLC frames at 800\,Herz, consuming less than 2.8\,mJ, and maintains sleep-mode power below 30\,uW.
Emergency vehicles require rapid passage through congested traffic, yet existing strategies fail to adapt to dynamic conditions. We propose a novel hierarchical graph neural network (GNN)-based multi-agent reinforcement learning framework to coordinate connected vehicles for emergency corridor formation. Our approach uses a high-level planner for global strategy and low-level controllers for trajectory execution, utilizing graph attention networks to scale with variable agent counts. Trained via Multi-Agent Proximal Policy Optimization (MAPPO), the system reduces emergency vehicle travel time by 28.3% compared to baselines and 44.6% compared to uncoordinated traffic in simulations. The design achieves near-zero collision rates (0.3%) while maintaining 81% of background traffic efficiency. Ablation and generalization studies confirm the framework's robustness across diverse scenarios. These results demonstrate the effectiveness of combining GNNs with hierarchical learning for intelligent transportation systems.
As world models gain momentum in Embodied AI, an increasing number of works explore using video foundation models as predictive world models for downstream embodied tasks like 3D prediction or interactive generation. However, before exploring these downstream tasks, video foundation models still have two critical questions unanswered: (1) whether their generative generalization is sufficient to maintain perceptual fidelity in the eyes of human observers, and (2) whether they are robust enough to serve as a universal prior for real-world embodied agents. To provide a standardized framework for answering these questions, we introduce the Embodied Turing Test benchmark: WoW-World-Eval (Wow,wo,val). Building upon 609 robot manipulation data, Wow-wo-val examines five core abilities, including perception, planning, prediction, generalization, and execution. We propose a comprehensive evaluation protocol with 22 metrics to assess the models' generation ability, which achieves a high Pearson Correlation between the overall score and human preference (>0.93) and establishes a reliable foundation for the Human Turing Test. On Wow-wo-val, models achieve only 17.27 on long-horizon planning and at best 68.02 on physical consistency, indicating limited spatiotemporal consistency and physical reasoning. For the Inverse Dynamic Model Turing Test, we first use an IDM to evaluate the video foundation models' execution accuracy in the real world. However, most models collapse to $\approx$ 0% success, while WoW maintains a 40.74% success rate. These findings point to a noticeable gap between the generated videos and the real world, highlighting the urgency and necessity of benchmarking World Model in Embodied AI.
Generalist Vision-Language-Action models are currently hindered by the scarcity of robotic data compared to the abundance of human video demonstrations. Existing Latent Action Models attempt to leverage video data but often suffer from visual entanglement, capturing noise rather than manipulation skills. To address this, we propose Contrastive Latent Action Pretraining (CLAP), a framework that aligns the visual latent space from videos with a proprioceptive latent space from robot trajectories. By employing contrastive learning, CLAP maps video transitions onto a quantized, physically executable codebook. Building on this representation, we introduce a dual-formulation VLA framework offering both CLAP-NTP, an autoregressive model excelling at instruction following and object generalization, and CLAP-RF, a Rectified Flow-based policy designed for high-frequency, precise manipulation. Furthermore, we propose a Knowledge Matching (KM) regularization strategy to mitigate catastrophic forgetting during fine-tuning. Extensive experiments demonstrate that CLAP significantly outperforms strong baselines, enabling the effective transfer of skills from human videos to robotic execution. Project page: https://lin-shan.com/CLAP/.
Vision-Language-Action (VLA) models have demonstrated impressive capabilities in generalized robotic control; however, they remain notoriously brittle to linguistic perturbations. We identify a critical ``modality collapse'' phenomenon where strong visual priors overwhelm sparse linguistic signals, causing agents to overfit to specific instruction phrasings while ignoring the underlying semantic intent. To address this, we propose \textbf{Residual Semantic Steering (RSS)}, a probabilistic framework that disentangles physical affordance from semantic execution. RSS introduces two theoretical innovations: (1) \textbf{Monte Carlo Syntactic Integration}, which approximates the true semantic posterior via dense, LLM-driven distributional expansion, and (2) \textbf{Residual Affordance Steering}, a dual-stream decoding mechanism that explicitly isolates the causal influence of language by subtracting the visual affordance prior. Theoretical analysis suggests that RSS effectively maximizes the mutual information between action and intent while suppressing visual distractors. Empirical results across diverse manipulation benchmarks demonstrate that RSS achieves state-of-the-art robustness, maintaining performance even under adversarial linguistic perturbations.
Recent Vision-Language Models (VLMs) have demonstrated significant potential in robotic planning. However, they typically function as semantic reasoners, lacking an intrinsic understanding of the specific robot's physical capabilities. This limitation is particularly critical in interactive navigation, where robots must actively modify cluttered environments to create traversable paths. Existing VLM-based navigators are predominantly confined to passive obstacle avoidance, failing to reason about when and how to interact with objects to clear blocked paths. To bridge this gap, we propose Counterfactual Interactive Navigation via Skill-aware VLM (CoINS), a hierarchical framework that integrates skill-aware reasoning and robust low-level execution. Specifically, we fine-tune a VLM, named InterNav-VLM, which incorporates skill affordance and concrete constraint parameters into the input context and grounds them into a metric-scale environmental representation. By internalizing the logic of counterfactual reasoning through fine-tuning on the proposed InterNav dataset, the model learns to implicitly evaluate the causal effects of object removal on navigation connectivity, thereby determining interaction necessity and target selection. To execute the generated high-level plans, we develop a comprehensive skill library through reinforcement learning, specifically introducing traversability-oriented strategies to manipulate diverse objects for path clearance. A systematic benchmark in Isaac Sim is proposed to evaluate both the reasoning and execution aspects of interactive navigation. Extensive simulations and real-world experiments demonstrate that CoINS significantly outperforms representative baselines, achieving a 17\% higher overall success rate and over 80\% improvement in complex long-horizon scenarios compared to the best-performing baseline
This paper presents a neuromorphic, event-driven tactile sensing system for soft, large-area skin, based on the Dynamic Vision Sensors (DVS) integrated with a flexible silicone optical waveguide skin. Instead of repetitively scanning embedded photoreceivers, this design uses a stereo vision setup comprising two DVS cameras looking sideways through the skin. Such a design produces events as changes in brightness are detected, and estimates press positions on the 2D skin surface through triangulation, utilizing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to find the center of mass of contact events resulting from pressing actions. The system is evaluated over a 4620 mm2 probed area of the skin using a meander raster scan. Across 95 % of the presses visible to both cameras, the press localization achieved a Root-Mean-Squared Error (RMSE) of 4.66 mm. The results highlight the potential of this approach for wide-area flexible and responsive tactile sensors in soft robotics and interactive environments. Moreover, we examined how the system performs when the amount of event data is strongly reduced. Using stochastic down-sampling, the event stream was reduced to 1/1024 of its original size. Under this extreme reduction, the average localization error increased only slightly (from 4.66 mm to 9.33 mm), and the system still produced valid press localizations for 85 % of the trials. This reduction in pass rate is expected, as some presses no longer produce enough events to form a reliable cluster for triangulation. These results show that the sensing approach remains functional even with very sparse event data, which is promising for reducing power consumption and computational load in future implementations. The system exhibits a detection latency distribution with a characteristic width of 31 ms.
Many nonlinear optimal control and optimization problems involve constraints that combine continuous dynamics with discrete logic conditions. Standard approaches typically rely on mixed-integer programming, which introduces scalability challenges and requires specialized solvers. This paper presents an exact reformulation of broad classes of logical constraints as binary-variable-free expressions whose differentiability properties coincide with those of the underlying predicates, enabling their direct integration into nonlinear programming models. Our approach rewrites arbitrary logical propositions into conjunctive normal form, converts them into equivalent max--min constraints, and applies a smoothing procedure that preserves the exact feasible set. The method is evaluated on two benchmark problems, a quadrotor trajectory optimization with obstacle avoidance and a hybrid two-tank system with temporal logic constraints, and is shown to obtain optimal solutions more consistently and efficiently than existing binary variable elimination techniques.
Ensuring the functional safety of Autonomous Vehicles (AVs) requires motion planning modules that not only operate within strict real-time constraints but also maintain controllability in case of system faults. Existing safeguarding concepts, such as Online Verification (OV), provide safety layers that detect infeasible planning outputs. However, they lack an active mechanism to ensure safe operation in the event that the main planner fails. This paper presents a first step toward an active safety extension for fail-operational Autonomous Driving (AD). We deploy a lightweight sampling-based trajectory planner on an automotive-grade, embedded platform running a Real-Time Operating System (RTOS). The planner continuously computes trajectories under constrained computational resources, forming the foundation for future emergency planning architectures. Experimental results demonstrate deterministic timing behavior with bounded latency and minimal jitter, validating the feasibility of trajectory planning on safety-certifiable hardware. The study highlights both the potential and the remaining challenges of integrating active fallback mechanisms as an integral part of next-generation safeguarding frameworks. The code is available at: https://github.com/TUM-AVS/real-time-motion-planning
In evolutionary robotics, robot morphologies are designed automatically using evolutionary algorithms. This creates a body-brain optimization problem, where both morphology and control must be optimized together. A common approach is to include controller optimization for each morphology, but starting from scratch for every new body may require a high controller learning budget. We address this by using Bayesian optimization for controller optimization, exploiting its sample efficiency and strong exploration capabilities, and using sample inheritance as a form of Lamarckian inheritance. Under a deliberately low controller learning budget for each morphology, we investigate two types of sample inheritance: (1) transferring all the parent's samples to the offspring to be used as prior without evaluating them, and (2) reevaluating the parent's best samples on the offspring. Both are compared to a baseline without inheritance. Our results show that reevaluation performs best, with prior-based inheritance also outperforming no inheritance. Analysis reveals that while the learning budget is too low for a single morphology, generational inheritance compensates for this by accumulating learned adaptations across generations. Furthermore, inheritance mainly benefits offspring morphologies that are similar to their parents. Finally, we demonstrate the critical role of the environment, with more challenging environments resulting in more stable walking gaits. Our findings highlight that inheritance mechanisms can boost performance in evolutionary robotics without needing large learning budgets, offering an efficient path toward more capable robot design.
Evolutionary Robotics offers the possibility to design robots to solve a specific task automatically by optimizing their morphology and control together. However, this co-optimization of body and control is challenging, because controllers need some time to adapt to the evolving morphology - which may make it difficult for new and promising designs to enter the evolving population. A solution to this is to add intra-life learning, defined as an additional controller optimization loop, to each individual in the evolving population. A related problem is the lack of diversity often seen in evolving populations as evolution narrows the search down to a few promising designs too quickly. This problem can be mitigated by implementing full generational replacement, where offspring robots replace the whole population. This solution for increasing diversity usually comes at the cost of lower performance compared to using elitism. In this work, we show that combining such generational replacement with intra-life learning can increase diversity while retaining performance. We also highlight the importance of performance metrics when studying learning in morphologically evolving robots, showing that evaluating according to function evaluations versus according to generations of evolution can give different conclusions.
Humans anticipate, from a glance and a contemplated action of their bodies, how the 3D world will respond, a capability that is equally vital for robotic manipulation. We introduce PointWorld, a large pre-trained 3D world model that unifies state and action in a shared 3D space as 3D point flows: given one or few RGB-D images and a sequence of low-level robot action commands, PointWorld forecasts per-pixel displacements in 3D that respond to the given actions. By representing actions as 3D point flows instead of embodiment-specific action spaces (e.g., joint positions), this formulation directly conditions on physical geometries of robots while seamlessly integrating learning across embodiments. To train our 3D world model, we curate a large-scale dataset spanning real and simulated robotic manipulation in open-world environments, enabled by recent advances in 3D vision and simulated environments, totaling about 2M trajectories and 500 hours across a single-arm Franka and a bimanual humanoid. Through rigorous, large-scale empirical studies of backbones, action representations, learning objectives, partial observability, data mixtures, domain transfers, and scaling, we distill design principles for large-scale 3D world modeling. With a real-time (0.1s) inference speed, PointWorld can be efficiently integrated in the model-predictive control (MPC) framework for manipulation. We demonstrate that a single pre-trained checkpoint enables a real-world Franka robot to perform rigid-body pushing, deformable and articulated object manipulation, and tool use, without requiring any demonstrations or post-training and all from a single image captured in-the-wild. Project website at https://point-world.github.io/.
In multi-robot collaborative area search, a key challenge is to dynamically balance the two objectives of exploring unknown areas and covering specific targets to be rescued. Existing methods are often constrained by homogeneous graph representations, thus failing to model and balance these distinct tasks. To address this problem, we propose a Dual-Attention Heterogeneous Graph Neural Network (DA-HGNN) trained using deep reinforcement learning. Our method constructs a heterogeneous graph that incorporates three entity types: robot nodes, frontier nodes, and interesting nodes, as well as their historical states. The dual-attention mechanism comprises the relational-aware attention and type-aware attention operations. The relational-aware attention captures the complex spatio-temporal relationships among robots and candidate goals. Building on this relational-aware heterogeneous graph, the type-aware attention separately computes the relevance between robots and each goal type (frontiers vs. points of interest), thereby decoupling the exploration and coverage from the unified tasks. Extensive experiments conducted in interactive 3D scenarios within the iGibson simulator, leveraging the Gibson and MatterPort3D datasets, validate the superior scalability and generalization capability of the proposed approach.